Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(7): 107193, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485353

RESUMO

Azoospermia is a significant cause of male infertility, with non-obstructive azoospermia (NOA) being the most severe type of spermatogenic failure. NOA is mostly caused by congenital factors, but our understanding of its genetic causes is very limited. Here, we identified a frameshift variant (c.201_202insAC, p.Tyr68Thrfs∗17) and two nonsense variants (c.1897C>T, p.Gln633∗; c.2005C>T, p.Gln669∗) in KCTD19 (potassium channel tetramerization domain containing 19) from two unrelated infertile Chinese men and a consanguineous Pakistani family with three infertile brothers. Testicular histological analyses revealed meiotic metaphase I (MMI) arrest in the affected individuals. Mice modeling KCTD19 variants recapitulated the same MMI arrest phenotype due to severe disrupted individualization of MMI chromosomes. Further analysis showed a complete loss of KCTD19 protein in both Kctd19 mutant mouse testes and affected individual testes. Collectively, our findings demonstrate the pathogenicity of the identified KCTD19 variants and highlight an essential role of KCTD19 in MMI chromosome individualization.

2.
Cell Rep ; 38(12): 110540, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35320728

RESUMO

The DSB machinery, which induces the programmed DNA double-strand breaks (DSBs) in the leptotene and zygotene stages during meiosis, is suppressed before the onset of the pachytene stage. However, the biological significance and underlying mechanisms remain largely unclear. Here, we report that ZFP541 is indispensable for the suppression of DSB formation after mid-pachytene. The deletion of Zfp541 in mice causes the aberrant recruitment of DSB machinery to chromosome axes and generation of massive DSBs in late pachytene and diplotene spermatocytes, leading to meiotic arrest at the diplotene stage. Integrated analysis of single-cell RNA sequencing (scRNA-seq) and chromatin immunoprecipitation (ChIP) sequencing data indicate that ZFP541 predominantly binds to promoters of pre-pachytene genes, including meiotic DSB formation-related genes (e.g., Prdm9 and Mei1) and their upstream activators (e.g., Meiosin and Rxra), and maintains their repression in pachytene spermatocytes. Our results reveal that ZFP541 functions as a transcriptional regulator in pachytene spermatocytes, orchestrating the transcriptome to ensure meiosis progression.


Assuntos
Prófase Meiótica I , Espermatócitos , Animais , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Histona-Lisina N-Metiltransferase/metabolismo , Masculino , Meiose , Camundongos , Estágio Paquíteno , Espermatócitos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Sci Adv ; 8(2): eabk1789, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020426

RESUMO

Faithful segregation of X and Y chromosomes requires meiotic recombination to form a crossover between them in the pseudoautosomal region (PAR). Unlike autosomes that have approximately 10-fold more double-strand breaks (DSBs) than crossovers, one crossover must be formed from the one or two DSBs in PARs, implying the existence of a sex chromosome­specific recombination mechanism. Here, we found that RAD51AP2, a meiosis-specific partner of RAD51, is specifically required for the crossover formation on the XY chromosomes, but not autosomes. The decreased crossover formation between X and Y chromosomes in Rad51ap2 mutant mice results from compromised DSB repair in PARs due to destabilization of recombination intermediates rather than defects in DSB generation or synapsis. Our findings provide direct experimental evidence that XY recombination may use a PAR-specific DSB repair mechanism mediated by factors that are not essential for recombination on autosomes.

4.
PLoS Genet ; 17(8): e1009753, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34388164

RESUMO

Meiosis is essential for the generation of gametes and sexual reproduction, yet the factors and underlying mechanisms regulating meiotic progression remain largely unknown. Here, we showed that MTL5 translocates into nuclei of spermatocytes during zygotene-pachytene transition and ensures meiosis advances beyond pachytene stage. MTL5 shows strong interactions with MuvB core complex components, a well-known transcriptional complex regulating mitotic progression, and the zygotene-pachytene transition of MTL5 is mediated by its direct interaction with the component LIN9, through MTL5 C-terminal 443-475 residues. Male Mtl5c-mu/c-mu mice expressing the truncated MTL5 (p.Ser445Arg fs*3) that lacks the interaction with LIN9 and is detained in cytoplasm showed male infertility and spermatogenic arrest at pachytene stage, same as that of Mtl5 knockout mice, indicating that the interaction with LIN9 is essential for the nuclear translocation and function of MTL5 during meiosis. Our data demonstrated MTL5 translocates into nuclei during the zygotene-pachytene transition to initiate its function along with the MuvB core complex in pachytene spermatocytes, highlighting a new mechanism regulating the progression of male meiosis.


Assuntos
Meiose/fisiologia , Metalotioneína/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico/genética , Citoplasma , Proteínas de Ligação a DNA , Fertilidade/genética , Fertilidade/fisiologia , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Prófase Meiótica I/fisiologia , Metalotioneína/genética , Camundongos , Camundongos Endogâmicos C57BL , Estágio Paquíteno/genética , Espermatócitos/fisiologia , Espermatogênese/fisiologia , Testículo , Proteínas Supressoras de Tumor/fisiologia
5.
Cell Death Dis ; 11(2): 142, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081844

RESUMO

5'-hydroxymethylcytosine (5hmC), an important 5'-cytosine modification, is altered highly in order in male meiotic prophase. However, the regulatory mechanism of this dynamic change and the function of 5hmC in meiosis remain largely unknown. Using a knockout mouse model, we showed that UHRF1 regulated male meiosis. UHRF1 deficiency led to failure of meiosis and male infertility. Mechanistically, the deficiency of UHRF1 altered significantly the meiotic gene profile of spermatocytes. Uhrf1 knockout induced an increase of the global 5hmC level. The enrichment of hyper-5hmC at transcriptional start sites (TSSs) was highly associated with gene downregulation. In addition, the elevated level of the TET1 enzyme might have contributed to the higher 5hmC level in the Uhrf1 knockout spermatocytes. Finally, we reported Uhrf1, a key gene in male meiosis, repressed hyper-5hmC by downregulating TET1. Furthermore, UHRF1 facilitated RNA polymerase II (RNA-pol2) loading to promote gene transcription. Thus our study demonstrated a potential regulatory mechanism of 5hmC dynamic change and its involvement in epigenetic regulation in male meiosis.


Assuntos
5-Metilcitosina/análogos & derivados , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Infertilidade Masculina/enzimologia , Prófase Meiótica I , Espermatócitos/enzimologia , Testículo/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , 5-Metilcitosina/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/deficiência , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Epigênese Genética , Fertilidade , Infertilidade Masculina/genética , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Polimerase II/metabolismo , Transdução de Sinais , Espermatócitos/patologia , Espermatogênese , Testículo/patologia , Testículo/fisiopatologia , Ativação Transcricional , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
6.
Sci Bull (Beijing) ; 65(24): 2120-2129, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36732965

RESUMO

Meiosis is pivotal for sexual reproduction and fertility. Meiotic programmed DNA double-strand breaks (DSBs) initiate homologous recombination, ensuring faithful chromosome segregation and generation of gametes. However, few studies have focused on meiotic DSB formation in human reproduction. Here, we report four infertile siblings born to a consanguineous marriage, with three brothers suffering from non-obstructive azoospermia and one sister suffering from unexplained infertility with normal menstrual cycles and normal ovary sizes with follicular activity. An autosomal recessive mutation in TOP6BL was found co-segregating with infertility in this family. Investigation of one male patient revealed failure in programmed meiotic DSB formation and meiotic arrest prior to pachytene stage of prophase I. Mouse models carrying similar mutations to that in patients recapitulated the spermatogenic abnormalities of the patient. Pathogenicity of the mutation in the female patient was supported by observations in mice that meiotic programmed DSBs failed to form in mutant oocytes and oocyte maturation failure due to absence of meiotic recombination. Our study thus illustrates the phenotypical characteristics and the genotype-phenotype correlations of meiotic DSB formation failure in humans.

7.
Gene ; 711: 143925, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31212048

RESUMO

More than 2300 genes have been reported to be involved in spermatogenesis but the functional roles of most genes in male fertility remain to be elucidated. In this study, we explored the function of dipeptidase 3 (Dpep3), a gene predicted to be testis-specific, in male fertility of mice. We showed that Dpep3 is evolutionarily conserved in human and mouse along with other eutherians. Its mRNA was exclusively detected in testicular tissue and expressed in testes from 7 days postpartum. To further explore its role in male fertility, we generated Dpep3 knockout mice (Dpep3-/-) using the CRISPR/Cas9 technology and found that the male Dpep3-/- mice are fertile despite a significant reduction in sperm count. Histology of testis and progression of meiotic prophase I showed no obvious difference between wild-type and Dpep3-/- mice. All these findings indicate that Dpep3 is not essential for male fertility in mice. These findings will help other researchers to avoid research duplication, save their time and resources to focus on the genes that are indispensable for male fertility.


Assuntos
Dipeptidases/genética , Dipeptidases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Espermatogênese , Testículo/metabolismo , Animais , Sequência Conservada , Técnicas de Inativação de Genes , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Especificidade de Órgãos , Filogenia , Contagem de Espermatozoides , Motilidade dos Espermatozoides
8.
Sci China Life Sci ; 62(4): 544-552, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30919279

RESUMO

The balanced actions between ubiquitination and deubiquitination precisely control the levels of various proteins vital for spermatogenesis. Ubiquitin-specific processing proteases (USPs) are the largest family of deubiquitinatingenzymes(DUBs), containing more than 50 members. So far, the functions of only a few USPs in male fertility have been studied, the roles of the majority are yet unknown. The present study aimed to explore the function of Usp29 (ubiquitin-specific protease 29) in male fertility. We found that Usp29 showed predominant expression in mouse testis, and its mRNA expression started to increase at 14 days postpartum (dpp), with a peak at 28 and 35 dpp. Using CRISPR/Cas9 technology, we generated Usp29 knockout mice (Usp29-/-). Usp29-/- mice exhibited no overt developmental anomalies. Further examination revealed that Usp29-/- mice had normal fertility and showed no detectable difference in the testis/body weight ratio, testicular and epididymal histology as well as epididymal sperm count from the wild-type littermates. Moreover, Usp29 is not a pseudogene in mice. Taken together, our study first reported that though Usp29 is predominantly expressed in the testis, it is not essential for male fertility in mice.


Assuntos
Fertilidade/genética , Proteases Específicas de Ubiquitina/metabolismo , Animais , Epididimo/anatomia & histologia , Feminino , Genoma/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Filogenia , RNA Mensageiro/metabolismo , Contagem de Espermatozoides , Espermatogênese , Testículo/anatomia & histologia , Testículo/metabolismo , Proteases Específicas de Ubiquitina/deficiência , Proteases Específicas de Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...